

Genomic ApplicationsPartnership Program (GAPP)

Radhakrishnan Mahadevan (U of T) / Visolis

Genomics Driven Engineering of Hosts for Bio-Nylon

- Project goal is to optimize and scale-up a biological manufacturing process for adipic acid – a \$6B / year commodity currently derived from petroleum and used to produce nylon and other materials.
- The new process will use forest biomass as the primary source of sugars (precursor), and engineered yeast strains for the conversion process.
- "Bio-adipic acid" will be commercially competitive and have a significantly reduced environmental footprint – replacement of a portion of petroleum feedstock, reduced greenhouse gas emissions during production, reduced chemical waste.
- If the project succeeds, Visolis plans to significantly expand its manufacturing capacity in Canada.

David Levin (U Manitoba) / Composites Innovation Centre

Fibre composite and biomatrix genomics (FiCoGEN) – application to the ground transportation industry

- The team is developing a manufacturing process for rigid, formable and durable bio-composites using renewable inputs – fibre from non-transgenic flax lines and binding resin produced by microbes.
- The composite material will first be used to produce a structural 'tub' for a lightweight vehicle (Westward Industries GO-4) for local service uses (e.g., parking enforcement, street cleaning).
- The new product line is expected to position CIC and WWI as leading suppliers of bio-composite materials and parts to major markets (e.g., California) and lead to significant investments in Canadian manufacturing.

GAPP Project Outcomes

A. Tsang (Concordia University) & Elanco Animal Health

Development and Commercialization of Next Generation of Enzyme Supplements for Swine and Poultry

Problem

 Swine and poultry are unable to digest up to 25% of current feed ingredients because the animals lack necessary enzymes

Solution

 Develop novel enzyme cocktails as feed additives and engineer
Aspergillis niger as production host

Challenges Faced

 Additional funding was required to expand Elanco's facilities to include a dedicated fermentation group

Social and Economic Benefits

- Improved cost of production for swine and poultry producers
- Decreased environmental footprint
- Enzyme cocktails resulted in a 4% improvement in Feed Conversion Rate, and saving \$17.5M in feed costs to Canadian growers

